Emociones, espacio público e imágenes urbanas en el contexto de COVID-19

Contenido principal del artículo

Resumen

El confinamiento y las restricciones de movilidad durante la pandemia de COVID-19 han dado lugar auna serie de dilemas sobre el uso y percepción del espacio público, donde sus propiedades relacionalesy contextuales pueden dar lugar a una diversidad de emociones. Con la aplicación de herramientas machinelearning y social network analysis, exploramos emociones sobre el espacio público basadas enatributos de imágenes fotográficas en la ciudad de Quito, Ecuador, tomadas entre abril y junio de 2020.Los resultados muestran emociones positivas y negativas asociadas a un mismo atributo del paisajeurbano, mientras que atributos que pueden considerarse opuestos (como “brillante” y “sucio”) podríantener mayor influencia en los sentimientos positivos sobre dicho espacio. Esta investigación abre unnuevo campo de estudio en la región sobre las emociones urbanas, y ofrece un mejor entendimiento delas percepciones de los ciudadanos sobre el espacio público durante la crisis de la pandemia.

Detalles del artículo

Sección
Miscelánea

Referencias

Acuto, M., Larcom, S., Keil, R., Ghojeh, M., Lindsay, T., Camponeschi, C., & Parnell, S. (2020, December 1). Seeing COVID-19 through an urban lens. Nature Sustainability, Vol. 3, pp. 977–978. https://doi.org/10.1038/s41893-020-00620-3

Aslam, F., Awan, T. M., Syed, J. H., Kashif, A., & Parveen, M. (2020). Sentiments and emotions evoked by news headlines of coronavirus disease (COVID-19) outbreak. Humanities and Social Sciences Communications, 7(1), 23. https://doi.org/10.1057/s41599-020-0523-3

Bondi, L. (2005). Making connections and thinking through emotions: between geography and psychotherapy. Transactions of the Institute of British Geographers, 30(4), 433–448. https://doi.org/10.1111/j.1475-5661.2005.00183.x

Brown, G., Raymond, C. M., & Corcoran, J. (2015). Mapping and measuring place attachment. Applied Geography, 57, 42–53. https://doi.org/https://doi.org/10.1016/j.apgeog.2014.12.011

Cabrera-Barona, P., & Carrión, A. (2020). Voiding Public Spaces, Enclosing Domestic Places: Place Attachment at the Onset of the Pandemic in Quito, Ecuador. Journal of Latin American Geography. https://doi.org/10.1353/lag.0.0145

Choudrie, J., Patil, S., Kotecha, K., Matta, N., & Pappas, I. (2021). Applying and Understanding an Advanced, Novel Deep Learning Approach: A Covid 19, Text Based, Emotions Analysis Study. Information Systems Frontiers, 23(6), 1431–1465. https://doi.org/10.1007/s10796-021-10152-6

Datta, R, Li, J., & Wang, J. Z. (2008). Algorithmic inferencing of aesthetics and emotion in natural images: An exposition. 2008 15th IEEE International Conference on Image Processing, 105–108. https://doi.org/10.1109/ICIP.2008.4711702

Datta, Ritendra, Joshi, D., Li, J., & Wang, J. Z. (2006). Studying Aesthetics in Photographic Images Using a Computational Approach. In A. Leonardis, H. Bischof, & A. Pinz (Eds.), Computer Vision – ECCV 2006 (pp. 288–301). Berlin, Heidelberg: Springer Berlin Heidelberg.

Devine-Wright, P., Pinto De Carvalho, L., Masso, A. Di, Lewicka, M., Manzo, L., & Williams, D. R. (2020). “Re-placed”-Reconsidering relationships with place and lessons from a pandemic. Journal of Environmental Psychology, 72, 101514. https://doi.org/10.1016/j.jenvp.2020.101514

Dhar, S., Ordonez, V., & Berg, T. L. (2011). High level describable attributes for predicting aesthetics and interestingness. CVPR 2011, 1657–1664. https://doi.org/10.1109/CVPR.2011.5995467

Dong, H., Ma, S., Jia, N., & Tian, J. (2021). Understanding public transport satisfaction in post COVID-19 pandemic. Transport Policy, 101, 81–88. https://doi.org/https://doi.org/10.1016/j.tranpol.2020.12.004

Ekman, P. (1999). Basic emotions. In T. Dalgleish & M. Power (Eds.), Handbook of Cognition and Emotion (pp. 45–60). Wiley & Sons Ltd.

Gholami, R., & Fakhari, N. (2017). Chapter 27 - Support Vector Machine: Principles, Parameters, and Applications. In P. Samui, S. Sekhar, & V. E. Balas (Eds.), Handbook of Neural Computation (pp. 515–535). https://doi.org/https://doi.org/10.1016/B978-0-12-811318-9.00027-2

Goodchild, M. F. (2007). Citizens as sensors: The world of volunteered geography. GeoJournal, 69, 211–221. https://doi.org/10.1007/s10708-007-9111-y

Hanzl, M. (2020). Urban forms and green infrastructure – the implications for public health during the COVID-19 pandemic. Cities & Health, 1–5. https://doi.org/10.1080/23748834.2020.1791441

He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep Residual Learning for Image Recognition. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 770–778. https://doi.org/10.1109/CVPR.2016.90

Hernández Magaña, A., & Güiza Valverde, F. (2016). Información Geográfica Voluntaria (IGV), estado del arte en Latinoamérica. Revista Cartográfica, (93), 35–55.

Hidalgo, M. C. (2013). Operationalization of place attachment: A consensus proposal. Studies in Psychology, 34(3), 251–259. https://doi.org/10.1174/021093913808295190

Hidalgo, M. C., & Hernandez, B. (2001). Place Attachment: Conceptual and Empirical Questions. Journal of Environmental Psychology, 21(3), 273–281. https://doi.org/10.1006/JEVP.2001.0221

Honey-Rosés, J., Anguelovski, I., Chireh, V. K., Daher, C., Konijnendijk van den Bosch, C., Litt, J. S., … Nieuwenhuijsen, M. J. (2020). The impact of COVID-19 on public space: an early review of the emerging questions – design, perceptions and inequities. Cities & Health, 1–17. https://doi.org/10.1080/23748834.2020.1780074

Huang, Y., Fei, T., Kwan, M.-P., Kang, Y., Li, J., Li, Y., … Bian, M. (2020). GIS-Based Emotional Computing: A Review of Quantitative Approaches to Measure the Emotion Layer of Human–Environment Relationships. ISPRS International Journal of Geo-Information, 9(9). https://doi.org/10.3390/ijgi9090551

Izard, C. E. (2007). Basic Emotions, Natural Kinds, Emotion Schemas, and a New Paradigm. Perspectives on Psychological Science, 2(3), 260–280. Retrieved from https://about.jstor.org/terms

Jasi?ski, A. (2020). Public space or safe space – remarks during the COVID-19 pandemic. Technical Transactions, e2020020, 20200020. https://doi.org/https://doi.org/10.37705/TechTrans/e2020020

Kamalipour, H., Yeganeh, A. J., & Alalhesabi, M. (2012). Predictors of Place Attachment in Urban Residential Environments: A Residential Complex Case Study. Procedia - Social and Behavioral Sciences, 35, 459–467. https://doi.org/10.1016/J.SBSPRO.2012.02.111

Kaur, S., Kaul, P., & Zadeh, P. M. (2020). Monitoring the Dynamics of Emotions during COVID-19 Using Twitter Data. Procedia Computer Science, 177, 423–430. https://doi.org/https://doi.org/10.1016/j.procs.2020.10.056

Kleinberg, J. M. (1999). Authoritative Sources in a Hyperlinked Environment. J. ACM, 46(5), 604–632. https://doi.org/10.1145/324133.324140

Lewicka, M. (2008). Place attachment, place identity, and place memory: Restoring the forgotten city past. Journal of Environmental Psychology, 28(3), 209–231. https://doi.org/10.1016/J.JENVP.2008.02.001

Li, Y., Fei, T., Huang, Y., Li, J., Li, X., Zhang, F., … Wu, G. (2020). Emotional habitat: mapping the global geographic distribution of human emotion with physical environmental factors using a species distribution model. International Journal of Geographical Information Science, 1–23. https://doi.org/10.1080/13658816.2020.1755040

Low, S., & Smart, A. (2020). Thoughts about Public Space During Covid-19 Pandemic. City & Society (Washington, D.C.), 32(1), 10.1111/ciso.12260. https://doi.org/10.1111/ciso.12260

Marin, A., & Wellman, B. (2014). Social Network Analysis: An Introduction. In J. Scott & P. Carrington (Eds.), The SAGE Handbook of Social Network Analysis (pp. 11–25). https://doi.org/10.4135/9781446294413.n2

Meng, M., & Zhao, C. (2015). Application of Support Vector Machines to a Small-Sample Prediction. Advances in Petroleum Exploration and Development, 10(2), 72–75.

Orellana, D., Bustos, M. E., Marín-Palacios, M., Cabrera-Jara, N., & Hermida, M. A. (2020). Walk’n’roll: Mapping street-level accessibility for different mobility conditions in Cuenca, Ecuador. Journal of Transport and Health, 16, 100821. https://doi.org/10.1016/j.jth.2020.100821

Resch, B., & Szell, M. (2019). Human-Centric Data Science for Urban Studies. ISPRS International Journal of Geo-Information, 8(12). https://doi.org/10.3390/ijgi8120584

Ricart, N., & Remesar, A. (2013). Reflexiones sobre el espacio público . On the W@terfront, (25), 5–35.

Sagl, G., Resch, B., & Blaschke, T. (2015). Contextual Sensing: Integrating Contextual Information with Human and Technical Geo-Sensor Information for Smart Cities. Sensors, 15(7), 17013–17035. https://doi.org/10.3390/s150717013

Tuan, Y.-F. (1976). Humanistic Geography. Annals of the Association of American Geographers, 66(2), 266–276.

Tuan, Y.-F. (1990). Topophilia: A Study of Environmental Perceptions, Attitudes, and Values. Columbia University Press.

Ujang, N. (2012). Place Attachment and Continuity of Urban Place Identity. Procedia - Social and Behavioral Sciences, 49, 156–167. https://doi.org/10.1016/J.SBSPRO.2012.07.014

van Eck, E., van Melik, R., & Schapendonk, J. (2020). Marketplaces as Public Spaces in Times of The Covid-19 Coronavirus Outbreak: First Reflections. Tijdschrift Voor Economische En Sociale Geografie, 111(3), 373–386. https://doi.org/https://doi.org/10.1111/tesg.12431

Woodford, L., & Bussey, L. (2021). Exploring the Perceived Impact of the COVID-19 Pandemic Social Distancing Measures on Athlete Wellbeing: A Qualitative Study Utilising Photo-Elicitation. Frontiers in Psychology, 12, 2727. https://doi.org/10.3389/fpsyg.2021.624023

Xue, J., Chen, J., Hu, R., Chen, C., Zheng, C., Su, Y., & Zhu, T. (2020). Twitter Discussions and Emotions About the COVID-19 Pandemic: Machine Learning Approach. J Med Internet Res, 22(11), e20550. https://doi.org/10.2196/20550

Zhang, F., Zhou, B., Liu, L., Liu, Y., Fung, H. H., Lin, H., & Ratti, C. (2018). Measuring human perceptions of a large-scale urban region using machine learning. Landscape and Urban Planning, 180, 148–160. https://doi.org/10.1016/j.landurbplan.2018.08.020

Zhou, B., Lapedriza, A., Khosla, A., Oliva, A., & Torralba, A. (2017). Places: A 10 million Image Database for Scene Recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence.